Evidence for the Sialylation of PilA, the PI-2a Pilus-Associated Adhesin of Streptococcus agalactiae Strain NEM316
نویسندگان
چکیده
Streptococcus agalactiae (or Group B Streptococcus, GBS) is a commensal bacterium present in the intestinal and urinary tracts of approximately 30% of humans. We and others previously showed that the PI-2a pilus polymers, made of the backbone pilin PilB, the tip adhesin PilA and the cell wall anchor protein PilC, promote adhesion to host epithelia and biofilm formation. Affinity-purified PI-2a pili from GBS strain NEM316 were recognized by N-acetylneuraminic acid (NeuNAc, also known as sialic acid) specific lectins such as Elderberry Bark Lectin (EBL) suggesting that pili are sialylated. Glycan profiling with twenty different lectins combined with monosaccharide composition by HPLC suggested that affinity-purified PI-2a pili are modified by N-glycosylation and decorated with sialic acid attached to terminal galactose. Analysis of various relevant mutants in the PI-2a pilus operon by flow-cytometry and electron microscopy analyses pointed to PilA as the pilus subunit modified by glycosylation. Double labeling using PilB antibody and EBL lectin, which specifically recognizes N-acetylneuraminic acid attached to galactose in α-2, 6, revealed a characteristic binding of EBL at the tip of the pilus structures, highly reminiscent of PilA localization. Expression of a secreted form of PilA using an inducible promoter showed that this recombinant PilA binds specifically to EBL lectin when produced in the native GBS context. In silico search for potentially glycosylated asparagine residues in PilA sequence pointed to N427 and N597, which appear conserved and exposed in the close homolog RrgA from S. pneumoniae, as likely candidates. Conversion of these two asparagyl residues to glutamyl resulted in a higher instability of PilA. Our results provide the first evidence that the tip PilA adhesin can be glycosylated, and suggest that this modification is critical for PilA stability and may potentially influence interactions with the host.
منابع مشابه
Dual Role for Pilus in Adherence to Epithelial Cells and Biofilm Formation in Streptococcus agalactiae
Streptococcus agalactiae is a common human commensal and a major life-threatening pathogen in neonates. Adherence to host epithelial cells is the first critical step of the infectious process. Pili have been observed on the surface of several gram-positive bacteria including S. agalactiae. We previously characterized the pilus-encoding operon gbs1479-1474 in strain NEM316. This pilus is compose...
متن کاملThe GBS PI-2a Pilus Is Required for Virulence in Mice Neonates
BACKGROUND Streptococcus agalactiae (Group B Streptococcus) is a leading cause of sepsis and meningitis in newborns. Most bacterial pathogens, including gram-positive bacteria, have long filamentous structures known as pili extending from their surface. Although pili are described as adhesive organelles, they have been also implicated in many other functions including thwarting the host immune ...
متن کاملImmunizing mice using different combination antigens of the PI-2a fimbria subunit of Streptococcus agalactiae
Background: Streptococcus agalactiae is the main causal pathogen of bovine mastitis (BM), causing considerable economic loss to the dairy industry worldwide. Vaccines against S. agalactiae play an important role in preventing disease. Aims: The aim of this study was to evaluate the immunoprotection of S. agalactiae pilus isla...
متن کاملBacterial Pili exploit integrin machinery to promote immune activation and efficient blood-brain barrier penetration
Group B Streptococcus (GBS) is the leading cause of meningitis in newborn infants. Bacterial cell surface appendages, known as pili, have been recently described in streptococcal pathogens, including GBS. The pilus tip adhesin, PilA, contributes to GBS adherence to blood-brain barrier (BBB) endothelium; however, the host receptor and the contribution of PilA in central nervous system (CNS) dise...
متن کاملDistribution of pilus islands in Streptococcus agalactiae that cause human infections: insights into evolution and implication for vaccine development.
At least one pilus island, PI-1 (70%), PI-2a (79%), or PI-2b (21%), was found among 898 Streptococcus agalactiae (group B streptococcus [GBS]) isolates recovered from humans, supporting the use of pilus proteins in vaccines. The stability and dominance of PI-1 and PI-2a in multiple serotypes and founder multilocus sequence types disseminated worldwide suggest it could be the PI combination pres...
متن کامل